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Multiple fault sets and three-dimensional strain: theory and application 
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Abstract--The widely accepted faulting theory of Anderson fails to explain three more coeval sets of faults or 
faults developed in a three-dimensional strain field. Reches has developed a model which suggests that four sets 
of faults, arranged in orthorhombic symmetry about the principal strain axes, are necessary to accommodate 
general, three-dimensional strain. This paper presents the odd-axis model, which recognizes certain geometric 
and kinematic relationships inherent in orthorhombic fault systems and in the Reches model and presents a 
practical method for decoding the strain significance of fault systems developed in three-dimensional strain fields. 
Both the odd-axis model and the Reches model are applied to an array of orthorhombic faults in the northern San 
RafaeI Swell of central Utah with excellent agreement between predicted and observed geometric and kinematic 
parameters. 

INTRODUCTION Reches & Dieterich 1983). The Chimney Rock fault 
array, a system of normal faults in the northern San 

Most  geologists are quite familiar with the idea that Rafael Swell of central Utah, presents an outstanding 
faults may develop in conjugate pairs, where each of the opportunity to apply and test both models in the field 
two sets in the pair represents a number of parallel (Krantz 1986). The excellent exposure at Chimney Rock 
faults. Since the landmark work of Anderson (1951), allows for independent calculations of the principal 
structural geology texts have described conjugate faults, strains which can be compared to kinematic parameters 
which intersect in the intermediate strain and stress predicted by the models based on fault geometry. 
directions, as the two potential orientations for develop- 
ing faults. The plane perpendicular to the intermediate 
axis contains both the maximum and minimum strain THE SLIP MODEL 
and stress directions and the fault slip vectors (Ramsay 
1967, Hobbs et al. 1976). Many field and laboratory The odd-axis analysis is based in part on the results of 
investigations have successfully applied conjugate fault the slip model of faulting derived by Reches (1978, 
theory to the extent that many geologists accept it as 1983), and therefore the slip model will first he reviewed 
universal. Recent work, however, suggests that conju- briefly. 
gate faults are only a special case of more general fault Unlike many fault models that describe the failure of 
deformation, coherent isotropic materials, the slip model assumes that 

Experimental (Oertel 1965) and field (Aydin & the body to be deformed contains many pre-existing, 
Reches 1977, Krantz 1986) observations have revealed randomly oriented planes of discontinuity. Reches 
fault systems with four sets of coeval faults, arranged in (1983) proposed that, within a given strain field, the 
orthorhombic symmetry. All examples were interpreted surfaces along which slip will first take place are those 
as faulting in response to three-dimensional strain, and that are most favorably oriented with respect to the 
none could be explained in the context of conjugate principal strain axes. The slip model assumes that failure 
faults, on each individual surface follows Coulomb frictional 

Both the slip model of Reches (1978, 1983) and the behavior and that the strain field is irrotational and of 
odd-axis model (this paper) represent attempts to constant volume. 
explain multiple fault sets in the context of three-dimen- Reches applied tensor analysis to identify the pre- 
sional, or true triaxial, strain fields. Both methods also ferred fault orientations and slip vectors. His analysis 
assume irrotational strain. These models suggest that proceeded by simultaneous minimizing of the differen- 
fault geometry is in part a function of the ratios of the tial stress and the energy dissipation necessary to initiate 
principal strains, especially the relative magnitude of the slip. 
intermediate strain, and that four sets of faults are The preferred orientations are derived as functions of 
necessary in the general case. Conjugate faults are inter- the principal extensions, el, where ex > ey > ez, and the 
preted as a special case consistent with both models, angle of internal friction, ~p. Reches defines the ratio of 

To date, Reches' slip model has been tested only by intermediate to minimum extension as k, where 
laboratory deformation experiments, with the results in ey 
good agreement with the model (Aydin & Reches 1982, k - . (1) 

Ez 
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ORTHORHOMBIC FAULTS: 3 -D  STRAIN 0 - -  90° - @ ( A n d e r s o n  1951) .  (2 )  

Figure 2(b) shows a three-dimensional strain field, 
, ~  ev ~ with a relatively small amount of positive extension in 

e I the •y direction, so that -½ < k < 0. The ez axis must now 
be the odd axis. The slip model predicts four sets of 
normal faults, arranged in two pairs. The faults of each 

ex pair intersect in the plane containing the intermediate 
and similar axes. The acute angle between the faults of 
each pair is 20'. For k < 0, 0' is the angle between any 
fault plane and the odd axis (ez). O' is also the comple- 
ment of the angle between the pole to any of the fault 

Fig. 1. Block diagram and stereonet of orthorhombic faults. The faults sets and ez: 
are arranged in four sets symmetrical about the principal strain axes. 

0 '  = 90 ° - cos -1 Nz  

-- 90 ° - cos -1 [(V~/2)(1 - sin @)1/2], (3) 

k may range from -½ to 1, with plane strain occurring where Nz is the cosine of the angle between the fault pole 
where k = 0. and the ez axis (Appendix A). 

The preferred fault orientations are presented as Equation (3) can be reduced so that 
stereonet plots and as sets of equations for direction 
cosines of poles to faults (Reches 1983 and Appendix A, 0' - 90° - @ - 0. (3a) 
this paper). Four sets of faults, arranged in orthorhombic 2 
symmetry about the principal strain axes, are predicted Thus the angular relationship between the faults of each 
for three-dimensional strain (Fig. 1). orthorhombic pair is the same as for conjugate pairs. 0' 

and 0 are controlled by the friction angle, @, and are 
independent of k. 

THE ODD-AXIS MODEL The angular relationship between the strikes of each 
pair, as measured in the intermediate-similar plane, 

The odd-axis model determines the principal strain however, is a function of the intermediate to minimum 
axes and their relative magnitudes from orientations of strain ratio (k). For strain fields with successively greater 
fault planes and slip vectors. Only the strain accommo- relative magnitudes of extension in the ey direction, the 
dated by slip along the faults is considered. It is assumed strikes of the predicted fault pairs are different. As 
that the strain is irrotational. Furthermore, the deri- shown in the rest of Fig. 2, the range of predicted faults 
vation of the strain equations below assumes that slip is can be represented by a rotation of the fault pairs about 
equally distributed among the fault sets and the indi- the vertical e z or odd axis. 
vidual faults. Similarly, the range of predicted reverse fault set 

The foundation of the odd-axis model is the recog- orientations can be represented by a rotation of fault 
nition of the 'odd' axis: the one principal strain axis with pairs about the ex or odd axis as k ranges from zero 
sign opposite the other two, assuming a three-dimen- (plane strain) to unity (axially-symmetric constriction) 
sional, constant volume strain field. If one principal and back to zero (plane strain) (Fig. 3). Figures 2 and 3 
extension (strain) is positive and the other two are demonstrate how conjugate faults represent a special 
negative, then the ex axis is the odd axis. If one principal case of more general fault set geometries. 
extension is negative and the other two are positive, then The slip model also reveals a specific geometric 
the e: axis is the odd axis. The intermediate axis, ey, and relationship between the slip vectors predicted for the 
the similar axis share the same sign. The similar axis preferred faults and the odd axis. For irrotational plane 
must be e~ where the odd axis is G, and vice versa, strain, the slip vectors are defined by the intersections of 

the conjugate fault planes and the e~ - ex plane (Hobbs 
Interpreting the slip model et al. 1976). For orthorhombic faults, none of the slip 

vectors lie in any of the principal strain planes. Instead, 
By applying the odd-axis concept to the slip model, the slip vector for each of the preferred fault sets is 

two important geometric relationships emerge. The first defined by the intersection of the fault plane and a 
relates the orientations of the preferred faults to differ- second plane containing the pole to the fault and the odd 
ent values of k. The second relates the orientation of the axis. The slip vector, fault pole and odd axis are co- 
slip vector predicted for a fault set to the pole to that set planar, and with the odd axis oriented vertically, the slip 
and the odd axis. vector must rake 90 ° (pure dip-slip) (Fig. 4). Horizontal 

Figure 2(a) shows a pair of conjugate faults and a odd axes require oblique slip. Appendix B presents a 
plane-strain field with k -- 0. No odd axis can be defined, proof of the coplanar relationship of slip vector, fault 
With ez oriented vertically, these are normal faults. The pole and odd axis, based on slip model orientation 
acute angle between the faults is 20, where equations. 
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Fig. 2. Series of block diagrams showing sets of normal faults predicted for values of k ranging from 0 to -½. The range of 
predicted fault set orientations can be represented by a rotation of fault pairs about the vertical odd axis, ez. Note that in (d) 
and (e) the relative extension in the original intermediate strain direction has become greater than that of the original 

maximum direction so that ex becomes ej and er becomes ex,. 

Odd-axis construction acute angle between the clusters of great circles. The 
intermediate axis will bisect the obtuse angle, 90 ° from 

Because the odd axis lies in the planes defined by the both the odd and similar axes. 
poles to the faults and the slip vectors, a simple stereonet Upon defining the orientation of the odd axis, one can 
construction can solve for the odd axis (Fig. 5). The distinguish whether it is the ez or ex axis on the basis of 
plane containing each fault pole and associated slip additional structuralgeologicinformation. Fault systems 
vector is represented as a great circle. The common with extension in the odd axis direction imply that ex is 
intersection of these planes, or average of intersections, the odd axis. Conversely, shortening in the odd-axis 
is the odd axis. This construction is directly analogous to directions suggests that ez is the odd axis. 
that proposed by Arthaud (1969). For  a large number of 
data pairs, statistical means for clusters of fault poles and 
associated striae provide the basis for a neater  construc- KINEMATICS OF ORTHORHOMBIC FAULTS 
tion. 

The other two principal strains must lie in a plane The odd-axis concept can be applied to orthorhombic 
perpendicular to the odd axis (Fig. 5). The similar axis, fault geometry to decode the strain significance of such 
which will be either the ez or the ex axis, will bisect the systems. The geometric relationships between fault 
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Fig. 3. Series of block diagrams showing sets of reverse faults predicted for values of k ranging from 0 to 1. The range of 
predicted fault set orientations can be represented by a rotation of fault pairs about the vertical odd axis, ex. Note that in (d) 
and (e) the relative amount of shortening in the original intermediate direction has become greater than that of the original 

minimum direction so that e z becomes ey, and ey becomes ez,. 

p lanes ,  slip vec tors  and  the  p r inc ipa l  s t ra in  axes a l low for  
d e t e r m i n a t i o n  of  p r inc ipa l  s t ra in  magn i tudes  and ra t ios  
f rom faul t  set  geome t ry .  The  m o d e l  assumes  bo th  con-  
s tant  vo lume  and  i r ro t a t iona l  s t ra in ,  and  can a c c o m m o -  

e,NT da te  bo th  finite and  inf in i tes imal  s trains.  F o r  some  faul t  
sys tems,  s t ra in  ra t io  ca lcula t ions  are  espec ia l ly  s imple .  

The  de r iva t ion  is based  on the  s y m m e t r y  o f  o r tho -  
r hombic  sys tems and  assumes  an equa l  d i s t r ibu t ion  of  

%,M strain  a m o n g  the  four  fault  sets as well  as a m o n g  the  
faul ts  of  one  set.  Thus  the  s t ra in  of  one  faul t  set  will 
r e p r e s e n t  the  o t h e r  th ree .  

The  de r iva t ion  begins  by  ca lcula t ing  the  ex tens ions  in 
each  of  the  p r inc ipa l  d i rec t ions  as funct ions  of  the  spac-  

Fig. 4. Stereonet illustrating the coplanar relationship of fault pole ing b e t w e e n  the pa ra l l e l  faults  of  one  set ,  the  ave rage  
(N), slip vector (S) and odd axis. Also shown are the fault plane defined 
by the pole (solid), the common strikes for the pairs of orthorhombic magn i tude  of  fault  slip and  the  o r i en t a t i on  of  the  p l ane  

faults (dashed), and the similar and intermediate axes. r ep re sen t ing  the faul t  set  re la t ive  to the  pr inc ipa l  s t ra in  
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• POLE TO 6od d N FAULT 6 i nl 
ION ~ ~  

> 6si m 
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Fig. 5. Example of an odd-axis construction. Each great circle is 
defined by a fault pole and striation on that fault. The common 
intersection of the great circles is the odd axis, which must be either ex 
or e~. The other two principal strains must be located on the plane 

perpendicular to the odd axis (dashed). The similar axis, e~ or ex, Fig. 6. Three-dimensional strain field with vertical odd axis and section 
bisects the acute angle between the dusters  of great circles. The of an orthorhombic fault, a is the angle between the fault strike and the 
intermediate axis, ey, bisects the obtuse angle. 2a is the acute angle intermediate axis, and 6 is the dip of the fault. The slip vector, S, is 

between the clusters measured in the intermediate-similar plane, resolved into a horizontal component,  Sh, and components parallel to 

the principal strain axes. 

axes. This orientation is expressed as a, the angle I~ 
between the intermediate axis and the strike of the fault ni - , (10) 
(set) as measured in the intermediate-similar plane, and di 
6, the dip of the fault measured from the intermediate-  where di is the average distance between the parallel 
similar plane (Fig. 6). In the odd-axis construction faults in the/-direction. This distance is a function of the 
(Fig. 5), the angle between the clusters of great circles, average fault spacing, d, measured perpendicular to the 
measured in the intermediate-similar plane, is 2a. fault planes, and of a and 6. Inteffault distances in the 

Extension is defined as the change in length over the three principal directions are given by 
initial length, or 

d 
A I i  __ A l  i din t - , (11)  

8i  - I i l '  i -- A l l '  (4) sin a sin 6 
d 

where li is the initial length, l 'g is the final length, and Ali dsim - cos a sin 6 (12) 
is the change in length, all in the/-direction, so that 

and 
l'i = li + Al i .  (5) d 

For an orthorhombic fault array, the change in length dodd -- cos 6" (13) 
in any one of the principal directions due to faulting is 

Substituting equations (11), (12) and (13) into given by 
equation (10) yields 

Ali = n iS i ,  (6) l in  t sin a sin 6 
where n i is the number of faults encountered in the hint = d ' (14) 
/-direction and Si is the component of average slip in the 
/ - d i r e c t i o n .  nsim = l~im COS a sin 6 (15) 

For one fault, the components of slip parallel to the d 
principal strain direction (Fig. 6) are simple functions of and 
the fault strike and the average slip, S (positive for 

/odd COS 6 (16) normal slip), and are given by nodO -- d 

Sin t = S sin a cos 6, (7) 
The change in length in the principal directions is S~im = S COS a COS 6 (8) 

derived by substituting equations (7) and (14), (8) and 
and (15), and (9) and (16) into equation (6): 

Sod d = S sin d. (9) 
M i n t _  l i ' t S  sin 2 a s i n o c o s 6 _  l[ntR sin 2 a s i n 2 d ,  

The number of faults (of one set) encountered in the d 2 
/-direction is given by (17) 
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' ' to fault systems with unequal development of faults 
A/sim - /simSd c°s2 a sin 6 cos 6 - lsimR2 c°s2 a sin 26 among the four possible sets. 

(18) Because equations (24)-(26) were derived without 
and restrictions on the magnitude of fault slip, they are valid 

for both finite and infinitesimal strains. The critical 
A/od d -- l°ddS sin 6 cos 6 -- l°ddR sin 26, (19) parameter is not the magnitude of strain but the ratio of 

d 2 average fault slip to average fault spacing. 
where For fault systems where the ratio of fault slip to fault 

S spacing, R, is small, the extension ratio equations can be 
R - (20) greatly simplified. As R approaches zero, the fractional 

d '  portion in each of equations (24)-(26) approaches unity, 

R represents the ratio of fault slip to fault spacing, so that 
The equations for extension in the principal directions eint 

due to one fault set are obtained by substituting - tan2 a,  (27) 
Esim 

equations (17), (18) and (19) into equation (4): 

(lintR/2) sin 2 a sin 26 eint _ _sin 2 a (28) 
Eint "= lin t - -  (l[ntR/2) sin 2 a sin 26 6°dd 

(R/2) sin 2 a sin 26 (21) and 
= 1 - (R/2) sin 2 a sin 26 ' esim = _cos 2 a. (29) 

(l~imR/2) cos 2 a sin 26 g°dd 

esirn = /~irn -- (l~im R/2) COS2 a sin 26 The accuracy of the simplified equations (27)-(29) 
relative to the complete equations (24)-(26) can be 

_- (R/2) cos2a sin 26 (22) estimated by calculating the ratio of the complete 
1 - (R/2) cos 2 a sin 26 

equation to the simplified equation, where 1.0 rep- 
and resents total accuracy. Figure 7 shows a series of curves 

-(l~,ddR/2) sin 26 that represent equal values of the ratio of equation (24) 
E°dd = l'dd -- (l'ddR/2) sin 26 to equation (27) for various values of a and R. ~b is 

assumed to be 30 °, and the curves are identical for 6 
= - (R/2)  sin 26 (23) values of 30 or 60 °. 

1 - (R/2) sin 26 " As seen in Fig. 7, the accuracy of equation (27) 

The negative sign inserted in equation (23) signifies increases as a increases or as R decreases. Equivalent 
the opposite sense of strain in the odd-axis direction, plots for equations (25) and (28) and equations (26) and 
These equations express the principal extensions as (29) would show similar results. In general, for R values 
functions of the fault strike and dip (as measured with less than 0.1, equations (27)-(29) will yield errors of 4% 
the odd axis vertical) and the ratio of fault slip to fault or less for all values of a. 
spacing. The final length, l'i, has been factored out. The Although the fault dip, 6, appears in equations (24)- 
principal extensions produced by four sets of faults (26), it factors out of the simplified extension ratio 
would require multiplying equations (21)-(23) by a fac- equations (27)-(29). These equations use only the fault 
tor of four, assuming true orthorhombic symmetry and strike, a,  which can be measured from the odd-axis 
equal distribution of strain, construction (Fig. 5) or from field exposures or maps of 

Equations (21)-(23) can now be used to determine the 
ratios of principal extension: 

¢ = 3 0 "  

Eint --  t a n  2 a (1 - (R/2) COS 2 (2 sin 26) (24) E q 2 6 / E q . Z 9 : ~  E- inl~sim//lon2 ~ ~= 30 ° or 60  ° 

esi m (1 - (R/2) sin 2 a sin 26) ' 45 ° t.o 

(1- (R/g)  sin26) (25) ~ 9 ~  - ~ o ~ c  ~ 
- sin 2 a (1 - (R/2) sin 2 a sin 26) 30 ° 

Eint 

Eodd 

and ;o; ; 
( 1  - (R/2) sin 26) . (26) 

esim -- COS 2 a (1 -- (R/2) cos 2 a sin 26) 
~°od d 0 ~ I I I I J t I I It l :  

.01 . 02  . 0 5  .10 . 20  . 50  1.0 2 . 0  

These last equations express the ratios of principal R 
extensions as functions of fault strike and dip (as Fig. 7. Accuracy of  simplified equat ion  (27) for  the ratio of  inter- 
measured with the odd axis vertical) and the ratio of fault mediate  to similar axis extension.  The plot shows  curves of  equal  value 

slip to fault spacing. Because these equations describe of the ratio of  equat ion  (27) to equat ion  (24) as funct ions of  R and a.  
1.0 represents  comple te  accuracy, tp = 30 ° and 6 = 30 or  60 °. For  R -< 

ratios of strain, the number of fault sets involved is 0.1, equat ion  (27) yields values accurate to 96% or be t ter  for all values 
immaterial. Furthermore, the equations are applicable of a. 
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¢ which is the relationship defined by the slip model 
(Reches 1983). 

A similar derivation for k < 0 and ez as the odd axis 
" ~  , yields erie z = k from equation (28), demonstrating that 

. ~-" ~'~ the kinematic implications of the odd-axis model and the 
slip model are compatible, at least for small values ofR. 

~" In general, both the odd-axis model and the slip model 
are most appropriate for fault systems where mechanical 

cy mal, and where fault set geometry accurately reflects the 
anisotropies and other structural complications are mini- 

finite strain field. As the magnitude of fault slip and the 
Fig. 8. Stereonet plot illustrating the relationships of the fault pole, N, value of R grow larger, these conditions become more 
the horizontal projection of the fault pole, N', the slip vector, S and the 
principal strains. The fault defined by the pole strikes at an angle a unlikely and fault plane or slip vector orientations can no 
from the Ey axis. N' trends at an angle ON,.z from the ex axis. 0n,.z = a. longer be predicted accurately. Systems produced by 

superimposed episodes of faulting or reactivation of 
pre-existing faults may present geometric and kinematic 
patterns that cannot be understood in the context of 

fault systems with observed dip-slip vectors. Equations simple orthorhombic or conjugate faulting. 
(27)-(29) should be restricted to fault systems with R 
values less than 0.1, which implies finite strains of a few 
per cent or less. 

Equations (27)-(29) can also be compared with those THE CHIMNEY ROCK FAULT ARRAY 
of Reches' slip model. For k > 0, the similar axis is ez and 

equation (27)becomes Together, the odd-axis model and the slip model of 

eint - -  ~ = tan 2 ct. (30) Reches (1983) offer a complementary theoretical con- 
¢sim ez text for analyzing fault patterns and strain fields. The 

practical value of these models can best be appreciated 
As shown stereographically in Fig. 8, N', the horizontal when applied to a system of orthorhombic faults in the 
projection of the fault pole N, lies at an angle ON,,z from field. The Chimney Rock fault array of central Utah 
the e~ axis, and 0N,,~ = a. Thus contains four sets of faults arranged in orthorhombic 

= symmetry. With nearly complete exposure, the Chimney tan 2 a = tan 2 0N,~ - sin2 0N,: 1 - cos 20N,,z (31) 
' - cos 20N,,z cos 20N,,z Rock area allows for independent measure of principal 

strains and ratios, providing the basis for a quantitative 
Using direction cosine notation (cos 0A,i = Ai), equation test of the fault models. 
(31) becomes 

1 - (N'z) 2 (32) The  s tudy  area tan 2 a = (N,z)2 

Substituting The Chimney Rock fault array covers 25 km 2 of the 
northern San Rafael Swell of central Utah (Gilluly 1928) 

N~ (33) (Fig. 9). Ten major normal faults, traceable along strike 
N'z - (1 - N2x) 1/2 for 1-3 km, and 30--40 minor faults displace the Jurassic 

into equation (31)yields Navajo Sandstone and overlying Carmel Formation 
(Orkid 1954, 1955, Cass 1955). Maximum observed 

tan 2 a =  1 - N x  2 - N ~  N~ (34) vertical separation was 33 m. 
Degree and completeness of exposure in the area are 

Finally, substituting the equations of the slip model for k excellent. Fault-line scarps, developed in the uppermost 
> O f o r N x a n d N z ( R e c h e s 1 9 8 3 a n d A p p e n d i x A ) y i e l d s  Navajo Sandstone, present hundreds of meters of 

polished and striated fault surface (Fig. 10). Elsewhere, 
1 - ½(1 + sin ~) - ½(1/(1 + k))(1 - sin ~) offset marker beds in the lower Carmel Formation tan 2 a = 

½(1/(1 + k))(1 - sin q~) ' tightly constrain fault location. Vertical separation can 
(35) be measured directly where the Navajo-Carmel contact 

which reduces to is exposed adjacent to the fault in both footwall and 
hangingwall (Fig. 11). In other locations, the distinctive 

1 -  (1 / (1+ k)) 1 +  k -  1 tan 2 ct -- - - k. (36) and consistent stratigraphy of the lower Carmel Forma- 
l/(1 + k) 1 tion provides for ready separation calculations. 

Located in the interior of the San Rafael Swell, 
Therefore, the study area contains no major or minor compli- 

-~- = tan 2 a = k, (37) cating structures. Bedding dips 6 ° _+ 2 ° throughout the 
gz area. 
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" , I k-m Fig. 12. Stereonet  of  poles to fault surfaces, striations, Fisher mean  
, I mi ~10"50' orientations and 95% confidence circles for the Chimney Rock array. 

I The fault poles and striations define four sets in or thorhombic  
symmetry.  

Fig. 9. Simplified map  of the Chimney Rock fault array, located in the 
nor thern  San Rafael  Swell of  central Utah.  Ten  major  normal  faults 

can be traced along strike for 1 km or more. 
principal strain axes with the fault set symmetry axes, 
and evaluating the unequal distribution of faults among 
the four sets. 

Fauhgeometry Figure 13 shows a map of vertical separations 
measured along the faults. Separation ranges from zero 

As seen both in map pattern (Fig. 9) and stereographi- at fault terminations to a maximum of 33 m. Some faults 
cally (Fig. 12), the faults at Chimney Rock clearly define can be traced from termination to termination along 
four sets: a pair striking west-northwest with one set strike. Horizontal gradients of separation range from 3 
dipping to the northeast and the other to the southwest, to 30 m km -1 and average 15 m km -1. 
and a pair striking east-northeast with one set dipping to Because of the symmetry of fault sets about the north- 
the northwest and the other to the southeast. Fault dips south, east-west and vertical directions, these must be 
range from 55 to 85 ° and average 72 ° . Figure 12 shows the principal strain axes. Furthermore, for an array of 
the clusters of fault poles and striations along with the normal faults with dip-slip displacement, the horizontal 
Fisher statistical mean and confidence circle for each principal strains must be extensional. Thus for Chimney 
cluster. Rock, ex is north-south, ey is east-west and e~ is vertical. 

These orientations define an orthorhombic symmetry A series of evenly-spaced transects were measured 
about axes nearly north-south, east-west and vertical, parallel to ex (19 transects) and to ey (26 transects). Each 
Mutual cross-cutting relationships between the four sets transect summed the components of fault slip parallel to 
require coeval development of all faults. Thus the Chim- the transect direction. Each component calculation was 
ney Rock faults comprise a true orthorhombic system, based on fault strike, fault dip and vertical separation at 

The Chimney Rock fault array deviates from the ideal the point where the transect intersects a fault. Vertical 
orthorhombic system in one respect. Both the map strain (ez) was calculated from the other two assuming 
(Fig. 9) and the stereonet (Fig. 12) display a preponder- constant volume deformation. 
ance of northwest-dipping faults. This discrepancy will Table 1 lists the average and maximum values calcu- 
be addressed below, lated for the principal strains. All of the extension 

magnitudes are less than 0.01 and are therefore in the 
Calculating observedprincipalstrain values range of infinitesimal strain. The non-zero value of ey 

expresses the three-dimensional nature of the strain 
The excellent and complete exposure at Chimney field, with positive extension in the intermediate strain 

Rock allows accurate calculation of the principal strains, direction. The maximum ex value of 0.0066 occurred in 
Testing the fault models requires a comparison of the center of the fault system, and ex values decreased 
observed and predicted geometric and kinematic par- systematically to both the east and west. Although east- 
ameters. Testing alsoinvolvesreconcilingthecalculated northeast-striking faults dominate in number, the ex 
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Fig. 10. Photograph of fault-line scarp at Chimney Rock, developed in the uppermost Navajo Sandstone. Net slip on this 
fault ranges from 7 m in the foreground to 13 m in the background. 

Fig. 11. Photograph of 3 m fault-line scarp at Chimney Rock. The geologist is standing on the upper contact of the Navajo 
Sandstone, which is displaced above her head on the left. 
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Fig. 14. Odd-axis construction for Chimney Rock using the mean 
orientations of fault sets and striations given in Fig. 12. The odd axis 

plunges steeply to the west, perpendicular to bedding, a is 24 °. 
0 I km "'z,b~ 

Fig. 13. Map of the Chimney Rock fault array showing patterns of fault 
slip measured in the field. Arrows point toward the hangingwall with For Chimney Rock, the similar and intermediate axes 
lengths proportional to the magnitude of vertical separation. Many trend only 1 ° counterclockwise from north-south and 

faults can be traced from maximum separation to termination(s). 
east-west, respectively; a,  one-half the acute angle, is 
24 ° ' 

Because the Chimney Rock array contains only nor- 
transects from the center of the fault system contained mal faults, the near-vertical odd axis must be ez, the 
zero net east-west strain. This suggests that ex is indeed principal shortening axis. The other two axes, which 
north-south and that horizontal strain is equally distri- both have sign opposite to that of the odd axis, must be 
buted among the fault sets. ey values were less regular, extensional. The similar axis, ex, and the intermediate 
with variable magnitudes from north to south across the axis, ey, match the sense of strain revealed in the 
array. The average intermediate extension is 0.0007. observed strain calculations above. The orientations of 

the constructed principal strains nearly match those used 
Applying the fault models above, and are virtually identical after correcting for the 

eastward dip of bedding. 
The mean directions of fault pole and striation sets can To apply the slip model, fault poles and associated 

be used for an odd-axis construction (Fig. 14). The great striations must first be corrected for tilt and declination 
circles connecting the mean pole of each fault set and so that principal strains lie north-south, east-west and 
associated striation mean intersect in a number of points vertical on the stereonet. All of the poles are then 
clustered about a line plunging approximately 84 ° to the reflected into the northeast quadrant using rules of 
west. This line is the odd axis and is perpendicular to orthorhombic symmetry (Reches 1983) (Fig. 15). The 
bedding. The other two principal strains must be bed- striations associated with each pole reflect accordingly. 
ding-parallel. For Chimney Rock, the reflected fault poles define a 

The similar and intermediate axes are located on the cluster with a Fisher mean trending 024 ° and plunging 
plane perpendicular to the odd axis (Fig. 14). The 18% On the fault plane defined by the mean pole, the 
intermediate axis bisects the obtuse angle between the mean striation direction is very nearly dip-slip. The 
great circles and the similar axis bisects the acute angle, maximum of the contoured striations lies exactly down 

dip as the odd-axis model predicts. 

Table 1. Observed values of principal extension calculated from field Figure 16 shows the mean reflected fault pole plotted 
data for the Chimney Rock fault array on the slip model net for normal faults, k < 0 (Reches 

1983). The slip model predicts k = -0 .16 __ 0.05, using 
Average Maximum the confidence circle of the mean pole to set the error 

ex(north-south) 0.0041_+0.0018 0.0066 limits. 
ey(east-west) 0.0007 + 0.0004 0.0012 Before using the odd-axis model equations to deter- 
ez(vertical ) -0.0048 +0.0022 -0.0078 mine the ratios of principal extension, R, the ratio of 
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Fig. 16. Mean reflected fault pole from Fig. 15 plotted on the slip model 
net  for  n o r m a l  faul ts  (k  < 0) (Reches  1983). The  m e a n  pole  pred ic t s  

k = - 0 . 1 6 .  

[-~ I - 5 ~  ~ Table 2 lists the three predicted principal extension 
[ ]  6-Io % ~ ratios calculated using a = 24 °, along with the observed 
[ ]  u-t~ % ratios based on the measured principal extension values 
[ ]  16- 20 % o AVERAGE POLE 

= AVERAGE STRIAE given in Table 1. The predicted ratio of horizontal 
[ ]  2 1 - 2 5  % extension (ey/ex) equals 0.20, very close to the observed 
[ ]  2 6  - 3 0  % ratios of 0.17 for the average observed extension values 
[ ]  3t-35 % and 0.18 for the maximum observed values. The other 

ratios are even closer, as ey/ez predicted equals -0 .16  
Fig. 15. C o n t o u r e d  s t e r e o n e t  p lo t  of  faul t  po les  and  s t r ia t ions ,  a f ter  
cor rec t ion  for  t i l t  and  dec l ina t ion  and  ref lec t ion  in to  the no r theas t  while ey/ez observed is -0 .15 ,  and ex/ez predicted equals 
quadrantusingrulesoforthorhombicsymmetry. The strong maximum --0.84 while ex/ez observed is -0 .85 .  Table 2 also 
of  s t r i a t ions  l ies exac t ly  d o w n  dip,  as the  odd  axis m o d e l  predic ts ,  includes the value of k predicted by the slip model 

Contour intervals are per onepercent area. (Fig. 16), -0 .16 ,  which is quite close to the observed 

value of ey/ez, -0.15. 
fault slip to fault spacing must be calculated. A rough Although the unequal populations of the four fault 
estimate of the value of R for Chimney Rock array can sets makes the Chimney Rock array less than ideal, 
be made by dividing the mean of the average slip on the another parameter  can be used to check the application 
major faults (Fig. 13), 14.4 m, by the average distance of the odd-axis model. The expected ratio of fault 
between the faults of the same set, 291 m (determined by encounters in the principal horizontal directions is given 
measuring the distances between adjacent faults of the by the ratio of equations (14) and (15): 
same set on a detailed map of the Chimney Rock array), 
which yields a value of 0.05 for R. Comparing the nint _ s i n a  _ tan a. (38) 
average fault slip and spacing values for individual nsi m cos a 
traverses yields R values of 0.02-0.04. Therefore,  the Table 2 contains the predicted (0.45) and observed 
simplified odd-axis model equations (27)-(29) can be (0.41) ratios of fault encounters in the horizontal direc- 
applied with confidence, tions, the latter based on the horizontal strain traverses. 

The close agreement again reflects the true orthorhom- 
bic nature of the Chimney Rock array and supports the 

Table  2. P red ic ted  and  o b s e r v e d  g e o m e t r i c  and  k i n e m a t i c  p a r a m e t e r s  
for the C h i m n e y  R o c k  faul t  a r ray  application of the theoretical models. 

a = 24 °, ¢5 = 72 °, R = 0.025 
O b s e r v e d  O b s e r v e d  

P red ic t ed  ( ave rage )  ( m a x i m u m )  D I S C U S S I O N  A N D  C O N C L U S I O N S  

,Esi m = 0.024 e x = 0.0041 G = 0.0066 The excellent agreement between predicted and 
ein ~ = 0.0049 e,, = 0.0007 ey = 0.0012 

~'odd = - 0 . 0 2 9  e: = - 0 . 0 0 4 8  e z = - 0 . 0 0 7 8  observed geometric and kinematic parameters at Chim- 
ney Rock reveals the true orthorhombic nature of the 

ei"t - tan 2 a = 0.20 ~ -  = 0.17 ey = 0.18 fault system, while providing a showcase for the use of 
Esirn Ex Ex 

the fault models in the field. The Chimney Rock array 
~'~nt _ s i n 2 a  = - 0 . 1 6  ~ =-0.15 ~ =-0.15 clearly represents the results of faulting in a three- 

Eod d Ez e. z 
dimensional strain field with a near-vertical odd axis. 

6sim - -  COS 2 a = --0.84 ex -- --0.85 ex -- 0.85 The maximum concentration of striations on the fault 
~ e o d  d Ez ~z 

surfaces lies exactly down dip as predicted, and the 
kpredicte d = - -  0.16 kob~¢~a = -0.15 predicted and observed ratios of principal extension 
Faul t  e n c o u n t e r  ra t io:  tan a = 0.45 ny/n,~ = 0.41 agree closely. 
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T h e  o d d - a x i s  m o d e l  p r o v i d e s  a s i m p l e  m e t h o d  fo r  A P P E N D I X  A 

i d e n t i f y i n g  a n d  l o c a t i n g  t h e  p r i n c i p a l  s t ra in  axes ,  assure-  
The following equations, modified from Reches (1983), express the 

ing orthorhombic symmetry and coaxial strain, orientationsofthepolestothepreferredfaults, N, and the slip vectors, 
Equations relate principal extensions and ratios to fault s, as functions of the ratio of intermediate to minimum extension, k, 
plane orientations and ratios of average fault slip to  and the internal friction angle, ~. Each orientation is given as three 

direction cosines with respect to the principal strain axes, ex >-- Ey 7~ Ez" 
average fault spacing. For small ratios of fault slip to The four fault set orientations and associated slip vectors are generated 
spacing, the odd-axis model equations are elementary by using the sign permutations listed below. 

f u n c t i o n s  o f  fau l t  ' s t r i k e '  on ly .  For k > 0: Nx = (X/2/2)(1 + sin ~)1/2 

The odd-axis model expresses the same relationships N~ = ½(2k/1 + k)t/2(1 + sin ~)~/2 

as R e c h e s '  s l ip m o d e l .  T h e s e  c o m p l i m e n t a r y  m o d e l s  Nz = ½(2/1 + k)V2(1 - sin q~)i/2 

provide a framework for dealing with multiple (or- s~ = (~/2/2)(1- sin q~)v2 

thorhombic) fault sets developed in three-dimensional s,. = ½(2k/1 + k)V2(1 + sin $)t/2 

strain fields. Both models also suggest that the conjugate s~ = ½(2/1 + k)l/2(1 + sin ~))1/2. 
fau l t s  o f  A n d e r s o n  (1951) r e p r e s e n t  a spec ia l  case  o f  For k < 0: N~ = (X/2/2)(1 + k)~r2(1 + sin ~)1/2 

plane-strain deformation. Orthorhombic faults and N~. = (X/2/2)(-k)V2(1 + sin ¢p)1/2 

these theoretical models represent at least a step closer N~ = (k/2/2)(1 - sin ~))1/2 
to a more general scheme of faulting. Sx = (',,/2/2) (1 + k)V2(1 - sin ~)v2 

Sy = 0~/2/2)(-k)l/z(1 - sin ~)l/2 
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